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A B S T R A C T

This paper obtair~s some l imit t heorems for t he
simple branching process allowing Immigration (Zn) when

the offspring mean ~s infinite. It Is shown that there

exists a function U such that (e~~U(X~)} conver ges

almos t surely and if s — £b
3
log ’U(j) c ., where (b~} Is

the Immigration distribution , the limi t is non-defective

and non-degenerate but Is infinite if S — — .
When s — — limit theorems are found for (U(X~)}

which involve a slowly varying non-linear norming.

Key words: BienaymE-Galton-Watson branching process ,

immigration , mar ti nga l e conv ergence ,

limit theorems , regular variation .
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f 1. INTRODUCTION
~~~~

• 1
Let {X~ : n O .l....} denote a Bienaym~—Gal ton—Watson process with

immigration , for which the offspring probability generating function ,

f, satisfies m — f (1—) — — and (I~ :n—1. 2....}. the number of Imsi—

grants Into successive generations , are Independent and Identically

distributed with probability generating function b satisfying

b (O) ~ 1. Suppose also that X0 0.

This paper describes the behavior of as ne —  in terms of

appropriate limi t theorems. Ifl 12 we show that for a certain increr~-
Ing function U constructed as In [6], the sequence {e ”U(X~)) con—

verges almost surely a-nd that the limi t is non-defective if a certain

condition on the immi gration distribution obtains and is essentially

InfinIte otherwise . It Is pointed out that, In the former case.

{X~} may be classified in terms of regulari ty and irregularity exactly

as in the case of no ImmigratIon [6].

In 13 we consider the case where • e ”U(X ,~) + — a.s. Limit

theorems are obtained for which involve a non-linear norminO by

a slowly varying (SV) function. Theorem 2 Involves no extra assump-

tio ns bu t has a ra ther s tran ge ap pearan ce: neater vers ions are gi ven

in Corollaries 1-3 under conditions expressed In terms of

6(x) • 1 - b (exp [_1/V(eX)]), where V is the functional Inverse of

U. These results are analogues of the families of limit theorems for

the case m — which were presented in Part 1 [3), and some exa~iples

are given to show that the condition s In Corollaries 1-3 are not

vacuous. Finally, it is shown that there is no sequence (ce) of

norning constants such that ~~~~ has a limit in distribution which

is neither defective nor degenerate at the origin.
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2.

To com p le te the surve y i n Par t I, it suffices to mention that a

version of Theorem 1 was first proved in [2] t!nder conditions on f

ensuring that U could be chosen as a suitable power of 109+ and only

convergence in law was established. The conditions of this result were

substantial ly relaxed in [1) to allow U to be SY at infinity ~nd

strictly Increasing. A restricted and more opaque version of Corol-

lary 1 was proved in [2].

2. ALMOST SURE CONVERGENCE

Let f~ denote the ~th functional Iterate of f and h~ the

functional inverse of -log f~ (e~~). Let pa(s ) = 
~~m=1

en d p (s ) Urn pa(s) for 0< s< -log q where q — f(q).c 1. SInce

h~(s)10 (n-.*) It Is clear that either p(s) > 0 or E -0. In the

former case it Is clear that Uexp (-h~ (s )X~)]/~~(s)} Is a martingale

and the mart ingale convergence theorem shows that for each
a.s.

0 cs c— log q, exp (.h~ (s )X~) —
~~ W(s), say , an d E W(s) — p(s). The

behavior of (X~} can be analyzed in precisely the same way in which

that of the corresponding process without immigration was analyzed in

(6). In particular the classification of points in (0,—log q) as

regular and Irregular carries over to the present case and if

1 • sup{s 0 < s < -log q, W(s) c 1) it follows that I is non-defective

an d P(T �s r) ~~~~~ 
PCI 

~~ 
= 0 for every regular point 5r~

• Finall y , for the function U constructed in [6), the arguments

used in this reference show that e~~U(X~) 
a~~. U(T~~). In the conp-

lementary case , when p(s) a 0, the mart ingale convergence theorem

shows that exp (-h~ ( s ) X ~) 
a.~ . ~ for each 0 <-s ‘-log q. To proceed

______________________________________________________________________ - - —- - - _________________________ 
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1-!
further we need the following details about U. It is shown In (6)

that by starting with a fixed s0e{0,-log q) It is possible to con-

struct U so that It is continuous on (0,—), IdentIca l ly zero on

(0.1/C-log q)), positi ve and strictly Increasing to infinity on

(1/C-log q),—) and satisfies the relations

U(1/h~ (s 0)) e’~, U(1/h~(s))/U(1/h~(s0)) U(1/s) (1)

(n= 0,1,...)

Choose a sequence {5m :m ,2,...} such that -log q> 
~m~

0 (m~s.—).

Let be a subset of the basic probability space such tiat

1 and hn(Sm )X n (W)+Ci ~~~~~~~ 
Thus on Q

for each m and this Implies that eventually

~ 
1/h~(S~ ) an d hen ce, from (1) , even tual ly

e~~U (X~(w)) ~ 
U (1/s~) (~~cfl ’).

letting n-.— and them m+— , we obtain all except the final assertion

of the following theorem.

Theorem 1. If p(s) >0 then e~~U(X~) 
a.~ . U(1/T) where T is

defined above, and If p (s) 0, e ”IJ(X~) 
a~~. — Furtheremore,

p(s)>0 j.Lf.

~~ 

~~ 
b~ log 4U(j) < — (2)

where (b
a
) denotes the immigration distribution.

The last assertion follows from these observations. Since U

is strictly Increasing, the relations (1) can be solved to obtain an

exp licit expression

he(s) 1/V(e’~U(s
3)) (3)

for h~ . and the proof of Lemma 2 in (1) needs , with one exception ,

-~~~~~~~~~~- -~~~~~~~~
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only trivia l changes to show that (2) holds 1ff

~ b[ex p(-1 / V ( e ’~U(s ~~ )))) > 0
n— i

where V Is the functional inverse of U , whence the assertion in

this case. The exception Is that the proof given in (1) assume s that

• log U is SV: that this is so follows from

lemma 1. If I Is SY at infini~y~ then so is L(U(’)).

Proof. By virtue of the un i form conve rgence theorem for SV fur.ctlors

-: [7] it suffices to show that for each x > 0, U(Xx)/U(x) is bounded

away from zero and Infinity for all sufficiently large x. It sucf i~ c~
to consider the case 1 ~ x — . The proof to be given para llels that

of Lemma 2.3.3 In [6). Choose s0c(0,— log q) as in Construction

2.3.1 of (6), and set D — (h(s0),s01. The functions

ge(s) h
~+i

(s)/h
~
(s) are continuous on 0, and , from equations (2)

F and (3) of [6], It fol lows that

~ g~ ,~ (s) ; ge(s) 0 as n-’— : (4)

hence , by Dini ’ s theorem , this convergence Is un i form on D. Thus for

al l n ~ n0, chosen large enough , and all scD , )./h~ (s ) ~ 1/h~~1(s).

For each sufficiently large x construct n and ScO so that

= h,~(s) (see Construction 2.3.1, (5]). It follow s that

1 <U(Ax )/U(x) ~ U (1/h~~1(s))/U(1/h~(s)) 
= e ,

and the lemma now follows.

3. [HE CASE p (s) E 0

The description of the behavior of in the case p(s) ~ 0

Is through distrib ut iona l , rather than almost sure , limi t theoreis.

~
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5.

The first step in deriv ing them is to note that , from ( 3),

E(exp (_h~ ( t)X~)) • p,~(t) = 

m~i
b[e (_ i mtJ(t _ 1

))j ]
Using integral test comparisons , as in (3), it Is not difficul t

to show that

p~(t) h~ (t ) ex p log b[ex P(_ 1/V (eY U(t 1))} ]d~

where A~(t~) -, 1 if t,~-.- O+ as n+.~. Denoting the Integral by J~
and making the change of variable eX = e~U(t ’), it follows that If
t = t + 0 +  then

1n+log U (i/t~)—J ,~ ~~~ 
~ ,1 

• J G(x)dx (5)
log U(1/-t~)

~iere G(x) • 1 _b (exp (_1/V(e’o))I. We are now In a position to

approach the main limit theorem , by making a suitable choice of t,~.

and by using the following version of Reuter s Lemma 1 in (13.

Lemma 2. Let U be constructed ~ccording~ to Construction 2.3.1 j~
-V j~J and in addition suppose It is str ict ly increasing on ( i / (— log qh=) •

Let be positive , Increas inq and satisfy the properties

(a) ~~(u) /y~ (v)-.-~ (n-.*) if u > v  and 0< c < u , v c d s— ; and

(b ) e”y~(u)+~ (n+~; c< u cd).

If , for a ~~quence of non-negat ive random var iables {W ~ } there is a

continuous function a(s) such that

a(u)  (c c u  <d; n-.—)

then

P(e ’~U( W ~ ) ~ y~(u)) -‘ a(u) .

I
it 

_~~~~~~
-_ -- —-- - - - - - - -



Proof. Let A~ (e~~U (W~) ~~ 
y ,~( u ) J  • (W 1~ ~ V (e~y~(u))}. Choose

- - uc(c , d) and c c u 1 <u < U
2 

cd . If ~~‘) = ex p (_ W ~/V (e ’~y~ (u 1))) ( i 1,2):

then arguing as In (1] we obtain

• EY~~ — exp (-A ,~~) ~ P ( A ,~
) < (EY~

2
~ ) ex p ~ 2)

where A~
1
~ V (e?

~y~(u))/V (e
1nIy~(ui)) (i=1 ,2). If we can show th~it

and A~
2
~-. 0, the assertion follows upon then letting u1 -‘u

We shal l prove only that A~
1L

~. It follows from (a) that for

each t’l

~~

for all sufficiently large n. Let m(n) be the inte ger part of

n + log ~~(u 1). By (b) m(n)-÷.. (n-..’) and e’~”’~ ~ e~y~ (u1) ~
an d hence , taking t e2,

~~~~~ V(exP(m(n)+2})/V(exp (m (n)+1))=h m(fl)(1/V(e))/h m(fl)+i(1/V(e)).

where we have used (3). Hence , from (4), l1m A~
1
~ — .

,log x
Now , for x > 1, let A(x) = exp I G(y)dy, ~shich Is SV at‘0

infinity and strictly increas ing. Furthermore , the ratio

1’ - lo g  x+n
A(x)/A(xe 11) = exp i_ f G(y)dy

I~ log x

• exp (-f~~G (log(zx))dz/z)

increases with x on (1,— ) from m~ say , to unity , and since

p (t) 0 1ff f~
’G ( x ) dx — , it follows that rn,~+O (n-..’); moreover ,

for each fixed x ~ 1, A (x)/A(xe~) decreases to zero as n-..’. Hence,

for any O c u  <1 and all n sufficIent ly large, we may define

0 uniquely In such a way that 
- 
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7.

uA (e”y~(u)) ,

where it follows that y,,~ Is increasing on (0,1), that

(n-.—) and that If 0< v u ci,

y~ (u) A ’ uA (e!~yfl
(u~fl 

A
_
1(uA (eI~y~(Y)))

y

~

( v )  ~~ vA (e1’Y~(v))j ic’(v!(e”y (v))]

— as n-’— , since A is SV at infinity . Choosing U(t 1) • y0(u )  In

(5) we see that a u and hence E [exp (_X~/V(e”y~(u)))] 
-
~~ u (0<ucl)1

‘i and that the other conditions of Lemma 2 are satisfied. This cci~plet2~

the proof of the following theorem .

Thereo~~2. jj p(s) 0, then

A (e ”U ( X~))/A(U(X~)) -
~~~ w

wI~ere 14 1s un ifor~ji 
distributed on 10,1).

Analogues of Theorem 2 also obtain when m< I and 1< m< — ;

see (3].

The proof of Theorem 2 has been carried out under the condition

X a~~~ However 
-

‘

= [f~ (exp(_ h~~t ] i P~
n) t

a e~~
tp~~~( t) ,

and since t was chosen to converge to zero , we see that Theorem 2

is valid for any initial state . Furthermore , A (e ”U(.))/A(U(.)) Is

strictly Increasin g and continuous and hence the weak ly convergent

sequence in Theorem 2 Is a Markov chain and , in addition , Is mixing

[5, Theorem 2). Thus [4] we cannot have convergence in probabi lity

~~~~~~~~~~~~

—-
~~~~

--- - - - 
--—~~~~~~~~~~~~ -
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8.

in Theorem 2.

The quantity conver g ing in law In Theorem 2 has a rather cdd

appearance since U(X ~ ) is present in both numerator and denominator.

Tidier versions can be obtained by making estimates of

A (e~~U ( X~))/A (U(X~)) exp G ( z Y~ ) dz } ; (6)

under appropriate assumptions on the behavior of G. For brevity ,

we write log U (X~) througho’it.

Co rollary 1. If p(s )  0 and lim xG(x) = 0, then

A (e~~U(X~))/A(e
’
~) 

.? w

where W is uniformly distributed on (0,1).

Proof. Since xG (x ) + 0, we have

f n  G(y) dy = o {~
log(1_n/v )} ; (7)n 

—

combining Theorem 2, (6) and (7), it fol lows that, as n-s.’,

n/Ye 
-
~~~ 1. Hence , as n-’.’ ,

A (U (X~))/A (e~) 
= exp { f:

n G(Y ) dy }
= exp o(log [Y 1/n)) ~ 1 ,

and the result follows.

Corolla~y2. If p(s) 0 and lim
~+_

xG (x) = a, 0 < a < — , then

n 1log (i(X~) - 1 W

where P EW ~ uj fU/ ( l+U)) a .

I
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Proof. Immediately, from (6 ) ,  we have

A (e~~’U(X ~ ) ) / A ( U (X~ ) ) ’ ~~~(l ~f~~ ) a

and the result now follows from Theorem 2.

Corollary 3. If p(s) 0, lim
~~.’

x G (x )  — , and G is regularly

varying at infinity , then nG (log u (x~)) ~ 14, where W Is a standard

neç~ative exponential random variable.

Proof. Here, from (6), we have

A (e~~U(X~ ))I A (U (X~ ))  
= exp 

{ 

_ y~f G(zY~) dz} ;(8)

combIning (8) wi th Theorem 2 and lim
~+_ x G(x)  .‘, it fol lows that ,

d
~s n-p.’, n/Y ,,~ -. 0. Hence , since G var ies regularly,

A (e~~ U(X ~ ) ) / A ( U (X ~ )) ~. ex p {_ n G (Y ~ )}

and the result fo l l ows .

If -in Cor ol lary 3 S has a pos i t i ve  Index A , then 0 c A ~ 1

and the conclus ion can be transformed to the form

a~
1 log U(x~ ) ~

w here W ’  has the extreme value distr ibut ion function ex p (—x ~~ )

and G(a~ ) =

We now show that for any U the hypotheses of Corol la r Ies 1-3

can be sat i s f ied .  Let A be a pos i t i ve  Integer valued random var-

lab le , define I — [ V ( A ) J  and let b be the probabi l i ty generat in~
funct on of I. Since

V ( A ) - I ~ I s V ( A )  (9 )

and log U Is SV at inf ini ty , It fo l lows that co ndition (2) is sat is-

- •- --•-- —•• - - -~~—----- -
— 
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f ied i ff E log~ A < .‘. In [3 ,s3. 1)  severa l  examp les were g iven where
+E log A = .‘, and for each of these 1(x) = P(A>x) is SV at infinity .

We now suppose this to be a lways  the case.  It fo l lows then , from

Lemma 1 and (9 ), that P(I >- x ) ‘~~ T(U (x ) )  ( x-.-.’) and hence an Abe l ian

theorem for power ser ies y ie lds

( 1— b( s ) ) / ( 1— s )  = 
~ s 3 P(I > j )  ~ ( 1— sY ~ T (U ( 1—s) )  ( s+ 1) .

Lett ing s = e x p (_ 1/ V ( e X )) and Invoking Lemma 1 once again , we obta in

G(x ) T (e X ). (10)

Let log 1x log x and lo~~ x = log(log k_ l x) (k=2 ,3 ,...) for

all suff ic ient ly large x. In [3) an examp le was given for which
r

1(x) ‘
~~ C E 11 log k x] ( x-.cu)

k=1

where r > 2 and c is a certain constant. Using (10) it is ob—

v icus that 
f~~~ 

G (x )dx  = and that xG(x)  -p 0 ( x+c.) and hence this

-
‘ examp le sa t is f ies  the condit ions of Corol lary 1.

Discrete d istr ibut ions were a lso  cnnstructed in [3] for which

1(x) ‘
~~ a/ log x ( 0 . c a c c o ) ;

T(x)  c( log x ) -~~~
1) ( 0 < c  <.‘, 1 < 6 < 2 ) ;

and

1(x) ~~‘ ( c/ b ) ( lo g rx) b (0 c- b ,c e , r ~ 2) .

Using (10) we see that these ex a mples  sa t i s fy  the hypotheses of

Coro l la r ies  2 and 3.

Final ly,  we show that the neatest  vers ion of Theorem 2 that

could be hoped for is in fact imp os s ib le .

Theorem 3. There Is no sequence of constants  (c ,) such that c~ ’U(X ~ )

has a l imit in d is t r i bu t i on  which is neither defect ive nor degener a te

at  zero.

— - - - - - ~~~ ~~~~~~~~~~~ • -—~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ -~~~~~~~~~ -
-—
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Proof. For any 0 < x1 < x2 < .‘, let p~(x1~x2) P(x~~ c ’U(Xn) sx 2).

Then , since A (e~~U(.))/A(U(.)) is continuous and strictly Increas-

ing , it fo l lows also that

p~ (x1 x2) 
= P[r~ (x 1) ~ A(e ’~IJ ( X~ ) ) / i t ( U ( X ~ )) ~ r~(x2)J

where

0 < r~(x) A (e ’1c~x)/A (c~x) < 1.

If (c,~) is such that c~’U(X~) Is to converge In distribut ion, we

must have c~e~~ + .‘ because of Theorem 1. Hence, since A is SV ,

we see that r~ (x 2 ) = r~(x1)(1+o(1)] as n-’— . Choose any si~bsequence

~~~ 
such that r (x 1) + r for some rc[0 ,1). Then , fo r any ~ > 0 ,

the intervals (r (x1),r (x2)~ belong to (r—e ,r+c) for all k
3

suff ic ient ly large. It fol lows from Theorem 2 that p (x1,x2) + 0,

and hence that , if c~~ U(X ~ ) converg es in distribution, Its limit

puts no mass on (0 , ).

It is interest ing to note the contrast  between the cases

p(x ) > 0 and p (x )  0. In the for~ner , the asymptotic behavior is

dominated by the under lying Ga l t on — Wa t so n  process , and the ef fect of

immigration , apart from preventing extinction , is seen only In the

distr ibut ion of t~.e l imit of U(X ~ )e~~’: eventua lly, the contribution

of the immigrat ion process becomes negl ig ible .  Howe ver , when p ( x) ~ 0 ,

the immigration d is t r ibut ion has such a broad tail that U(X ~ )e~~ Is

pus hed off to Inf inity a .s .  by the infin i te sequence of occasiona l ,

but very large , - inflows of immigrants. The character of Theorem 2 aid

it s C o r o l l a r i e s , giv ing lim i ts  in distr ibution but not wi th probabi-

l i ty one , ref lects  the nature of the immi gration process rather then

that of the Ga l ton - Watson  process.  In part icular , unl ike the case

— -~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ - 
:~~~~

—‘—- - ~~—
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when p(x) > 0, the limiting distr ibution appearing in Theorem 2 is

the same , whether or not the Galton-Wa-tson process is regular or

-I rregular.

* * * * *
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B-lenaym~-Gal ton-Watson branching process , immigration ,
mar tinga le convergence , limit theorems , regular variation.

20. A ISTRACT (Conli,w. ~~~~~~~~~~ .IJ. it ~~~~~~~~ a~4 Id.n’if .~ Ay ~eknurb.r) Th ~ S pape r obtains s ome~
Imit theorems for the si mple ~~~~~~~~ process al lowing Immigra—
~~~ when the offspring mean ls\ ln fln~ te. It -Is shown that there
~xIsts a funcJ.ioj U such that (?~~~U (X~)) converges almost surely
and if sa~~~j~o U(j) c • , where (b.c) Is the immigrati on distribu-
tion , th1 t is nonydefective an~~non-deganerate bu Ll s Infinite
If s ~ w Whe n s =

,p
$liml t theorems are found for (ti(X0)~ which

Involve ~a s low l y va yirog non-linear )normlng .
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